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Abstract

We develop theory and numerical algorithms to apply level set methods to problems involving the transport and

diffusion of material quantities in a level set framework. Level set methods are computational techniques for tracking

moving interfaces; they work by embedding the propagating interface as the zero level set of a higher dimensional

function, and then approximate the solution of the resulting initial value partial differential equation using upwind finite

difference schemes. The traditional level set method works in the trace space of the evolving interface, and hence

disregards any parameterization in the interface description. Consequently, material quantities on the interface which

themselves are transported under the interface motion are not easily handled in this framework. We develop model

equations and algorithmic techniques to extend the level set method to include these problems. We demonstrate the

accuracy of our approach through a series of test examples and convergence studies.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction and overview

In this paper, we develop numerical algorithms for tracking interfaces in which material quantities are

transported along an evolving front. The algorithms are designed to be robust, accurate, efficient, handle
topological change, and work in both two and three space dimensions.

One way to characterize interface motion is by a discrete parameterized view. These methods allow

accurate calculations, and include the ability to simultaneously move an interface while transporting

variable quantities. This last capability is of considerable importance in a variety of physical problems,

including boundary integral formulations of interface problems, in which single and double layer
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distributions must be updated and advanced in tandem with the moving interface, and problems in

semiconductor manufacturing under etching and deposition processes, in which associated quantities such

as step coverage are critical in accurately capturing the dynamics of the evolving profile. Possible draw-

backs of these marker Lagrangian approaches include difficulties with evaluating topological change, the

need to remove parts of the evolving front (known as delooping) to correctly characterize the viscosity

solution, the need to adaptively add and remove points to provide numerical resolution and ameliorate

strict time step requirements, and complications in three dimensions.

One alternative Eulerian numerical formulation is provided by the level set method, which embeds the
interface as the zero level set of a higher dimensional function. This approach extend to three dimensions

and easily handles topological change. Level set techniques have the additional advantage that they are

naturally linked to numerical schemes for hyperbolic conservation laws, and can easily provide accurate

values for geometric terms such as the normal direction and curvature. Nonetheless, the technique is not

easily applied to problems in which a material quantity is required to be evaluated along the interface;

fundamentally, this is because the method works in the range space of the domain, and ignore past in-

formation such as tangential stretch. While some extensions of these techniques have been developed, a

general and numerically sound algorithm is not yet available.
This paper presents techniques to design level set methods to accurately compute the evolution of in-

terfaces which carry material properties. The key idea involves the use of a single level set function to

characterize the interface position, and an associated field suitably extended off the interface to keep control

of the material quantities. We derive the relevant equations of motion, and then present our numerical

techniques, followed by a series of numerical convergence tests and model problems to verify the algorithm.

One straightforward example is the motion of a fluid interface which depends, in a boundary integral

formulation, on the vorticity distribution along the front. A more complex example involves copper

electroplating, which concerns the deposition of a substance which both diffuses on and is transported by
the evolving interface. In order to improve the filling of deep holes, an inhibitor is sometimes added to the

copper salt solution; the additive slows the copper deposition rate. The substance is thus consumed at the

surface and depletes towards the bottom of the trench (see [11,10] for similar examples.) An accurate

numerical simulation would allow for both diffusion and transport of the coverage material.

2. Equations of motion

We consider a problem in which an interface moves under a velocity which depends on location and local

geometric properties such as normal direction and curvature. Let GðxÞ be the value of a surface quantity at

a point x on the interface. Our goal is to characterize the transport of G under the interface motion.

2.1. Statement of problem: Lagrangian formulation

For ease of explanation, we discuss the problem in terms of curves propagating in two space dimensions;

ultimately, the equations we derive will apply to surface propagation in three space dimensions as well.

Consider a moving interface given by a curve; associated with this interface is a function G, which gives the

value of some scalar quantity along the interface.

We consider the following motions.

2.1.1. Interface motion

• Advection: The interface is passively advected under a velocity field ðuðx; yÞ; vðx; yÞÞ. Here, we assume

that this advection velocity is defined on the front itself; it may also have meaning off of the front.
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• Propagation: The interface propagates normal to itself with speed F , which may depend on position,

normal direction, local curvature, as well as the solution of some associated partial differential equation.

Here, the solution is meant to be the viscosity solution, selected through the appropriate entropy con-

dition (see [5,18,19,22]).

2.1.2. Evolution of material quantity G

The material quantity G which lies on the front itself also evolves. We allow for the following types of

evolution.
• Diffusion: The material quantity G is allowed to diffuse along the interface according to a standard dif-

fusion model; this can be thought of as occurring for a fixed interface.

• Conservative transport under front motion: At a particular point of the interface ðx; yÞ, G is carried with

the propagating interface. As a model, we take conservation of surface coverage. That is, as an element

of the interface stretches or shrinks under the front evolution, this corresponds to a commensurate de-

crease or increase (respectively) of Gðx; yÞ so that the G along the entire interface is conserved. Thus, if L
is the length of a parameterized tangent vector at ðx; yÞ, then LG is conserved under front motion. This is

described more precisely below.

2.2. Advection, propagation, smoothness, conservation

Our particular model for propagation of the surface scalar G has some subtlety. To begin, we require
that the total amount of G be conserved along the interface as it moves. This is not the same as assuming

that the underlying advection velocity is conservative. As an example, consider a unit circle with total

amount G0 of substance. Then at any point ðx; yÞ of the circle, we have that Gðx; yÞ ¼ G0=2p. Imagine that

the circle propagates in its normal direction with unit speed. Then since the total amount G along the front

is constant, we have that

Gðx; y; tÞ ¼ G0

2pð1þ tÞ :

It is easy to see that this is not the solution of the conservative advection equation for G. Instead, our model

corresponds to a conservative advection equation for LG, where L is a length of a surface element. Geo-

metrically, this means that if we imagine a painted balloon, as the balloon is blown up, the amount of paint

per unit surface area must decrease.
Second, non-smooth fronts pose an additional dilemma. Consider an initial square with constant G.

Suppose the square moves outwards with unit speed. The sides should move outwards carrying the material

quantity G, and the expanding corners should be arcs in which G is zero. This conserves the total amount of

G as the front moves, yet it is clear that the distribution of G is no longer smooth. Similarly, if the front

moves inwards, we view G as a delta function at the corners. Thus, in the presence of corners in the evolving

front, we must examine the regularized problem of the limit of smooth fronts which produce the non-

smooth front.

2.3. Level set methods

Level set methods, introduced by Osher and Sethian [16], rely in part on the theory of curve and surface

evolution given by Sethian in [17,18] and on the link between front propagation and hyperbolic conser-
vation laws discussed in [19]. These techniques recast interface motion as a time-dependent Eulerian initial

value partial differential equation, and rely on viscosity solutions to the appropriate differential equations

to update the position of the front, using an interface velocity that is derived from the relevant physics both
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on and off the interface. These viscosity solutions are obtained by exploiting schemes from the numerical

solution of hyperbolic conservation laws. Level set methods are specifically designed for problems involving

topological change, dependence on curvature, formation of singularities, and host of other issues that often

appear in interface propagation techniques. The equation of motion for the evolving level set function / is

given by

/t þ F jr/j þ u � r/ ¼ 0;

where F is the speed in the normal direction to the interface and u is the (vector) advection velocity. For

details, see [16,22].
Our goal now is to use this embedded interface approach to develop linked equations of motion for the

propagating interface and the material quantity G. We note that equations for a non-embedded model,

where properties are defined only the interface, have been previously developed in parameterized frame-

works, see, for example [29,32]. We also point out that there has been previous work on the description of

material quantities in the context of level set methods. In [4], work on solving diffusion-type equations on

static (non-moving) surfaces has been considered in an implicit representation, and in [8], a level set for-

mulation was used to track the evolution of vortex sheets, keeping track of the circulation on the evolving

interface. We refer the reader to these papers for background and earlier work.

2.4. Statement of problem: implicit formulation, two dimensions

Suppose that the material function Gfront, defined on the front, is in fact defined throughout the com-
putational domain, and use the notation G to represent this function. Thus, G is a function from R2 to R
which agrees with Gfront on the given initial curve C. We shall later make suggestions as to appropriate

choices for G, for now, we shall simply assume that it can be constructed and is sufficiently smooth.

Following the level set approach, let the initial curve C be embedded as the zero level set of some function

/ðx; y; t ¼ 0Þ. We derive evolution equations for / and G which produce implicit descriptions of the desired

action on the front itself. We do so term by term.

2.4.1. Diffusion

Begin with the diffusion equation in the case of a stationary front. Let Gððx; yÞ; tÞ be defined in all space

and agrees with Gfront on the stationary interface, and let /ðx; yÞ be an implicit representation of the in-

terface. Finally, let aðsÞ ¼ ðxðsÞ; yðsÞÞ parametrize the front by arc length, such that að0Þ ¼ ðx; yÞ. Diffusion

along the interface then implies that

Gtððx; yÞ; tÞ ¼ rGssððx; yÞ; tÞ;

where r is the diffusion constant. Setting r ¼ 1, we have that

Gtððx; yÞÞ ¼
o

os
o

os
GðaðsÞÞ½ 	

� �
¼ o

os
GxðaðsÞÞx0ðsÞ
�

þ GyðaðsÞÞy0ðsÞ
�

¼ ½GxxðaðsÞÞx0ðsÞ þ GxyðaðsÞÞy0ðsÞ	x0ðsÞ þ GxðaðsÞÞx0ðsÞ þ ½GxyðaðsÞÞx0ðsÞ þ GyyðaðsÞÞy 0ðsÞ	y0ðsÞ

þ GyðaðsÞÞy00ðsÞ;

where ðx0; y0Þ ¼ ð�/y ;/xÞ=L, L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

x þ /2
y

q
, and

x00 ¼ �/x

L
j; y 00 ¼ �

/y

L
j; j ¼

/2
y/xx � 2/x/y/xy þ /2

x/yy

L3
;
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j is the curvature of the front. Assembling the terms, we have

Gt ¼ Gxx
/y

L

�
� Gxy

/x

L

�
/y

L
� Gx/x

L
j � Gxy

/y

L

�
� Gyy

/x

L

�
/x

L
�
Gy/y

L
j

¼
Gxx/

2
y � 2Gxy/x/y þ Gyy/

2
x

L2
�
Gx/x þ Gy/y

L
j:

We now note that this equation may be defined on all of space, and defines the evolution of the material

function G both on and off the front. Additionally, we note that if ðnx; nyÞ is the value of the normal, the

above equation simplifies to

Gt ¼ ðGxxn2y � 2Gxynxny þ Gyyn2xÞ � ðGxnx þ GynyÞj:

Here, Gxnx þ Gyny is the dot product of rG with the normal. Finally, we note that the above equation has
been derived in [4] using more general approach; we present this derivation to emphasize the link with the

parametrized view.

2.4.2. Advection

Consider a front with scalar field G which is also undergoing advection by means of a vector field ðu; vÞ
that depends on ðx; yÞ.

We define the quantity L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

x þ /2
y

q
, which represents the length of the tangent vector along the in-

terface. Then conservation of the material quantity LG under advection by ðu; vÞ means that we have

ðLGÞt þ ðuLGÞx þ ðvLGÞy ¼ 0:

The first term is thus

ðLGÞt ¼ GLt þ LGt ¼ G
/x/xt þ /y/yt

L
þ LGt;

/xt ¼ �ðu/x þ v/yÞx ¼ �u/xx � v/xy � ux/x � vx/y ;

/yt ¼ �ðu/x þ v/yÞy ¼ �u/xy � v/yy � uy/x � vy/y ;

ðLGÞt ¼ �G
u/x/xx þ ðu/y þ v/xÞ/xy þ v/y/yy

L
� G

ux/
2
x þ ðvx þ uyÞ/y/x þ vy/

2
y

L
þ LGt:

The second term is

ðuLGÞx ¼ uxLGþ uLxGþ uLGx ¼ uxLGþ u
/x/xx þ /y/xy

L
Gþ uLGx:

The third term is similar, and leads to

�G
ux/

2
x þ ðvx þ uyÞ/y/x þ vy/

2
y

L2
þ Gt þ uxGþ uGx þ vyGþ vGy ¼ 0:

Rearranging, and using L2 ¼ /2
x þ /2

y , we have

Gt þ G
ux/

2
y � ðvx þ uyÞ/y/x þ vy/

2
x

L2
þ uGx þ vGy ¼ 0
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yields the final advection equation

Gt þ uGx þ vGy þ ðn2yux � nxnyðuy þ vxÞ þ n2xvyÞG ¼ 0:

2.4.3. Normal advection

If u ¼ Fnx, v ¼ Fny , where F can be a function of ðx; yÞ, we observe that the term

n2yux � nxnyðuy þ vxÞ þ n2xvy

simplifies to jF , and the evolution equation becomes

Gtðx; yÞ ¼ �F ½ðN � rGÞ þ jG	:

2.4.4. Final equations

Combining the previous equations, we get that if r is the diffusion coefficient, and the front is moved

with a combination of an advection field ðu; vÞ and a normal speed F :

Gt ¼ r ðGxxn2y
h

� 2Gxynxny þ Gyyn2xÞ � jðrG � NÞ
i
� ðu; vÞ � rG� ðn2yux � nxnyðuy þ vxÞ þ n2xvyÞG

� F ½ðN � rGÞ þ jG	:

2.5. Statement of problem: implicit formulation, three dimensions

The equations for three dimensions are derived in a similar manner; for a complete derivation, see [3].

We assume a diffusion coefficient r and an advection velocity field ðu; v;wÞ.
To simplify the notation, introduce the differential operator

NU½u; v;w	 ¼
1

krUk2
ðvy þ wzÞU2

x þ ðux þ wzÞU2
y þ ðux þ vyÞU2

z

�ðvx þ uyÞUxUy � ðwx þ uzÞUxUz � ðwy þ vzÞUyUz

" #
:

Using this operator, the mean curvature is given by

jM ¼ NU½Ux;Uy ;Uz	
krUk

and the differential equation simplifies to

Gt ¼ r NU½Gx;Gy ;Gz	
�

� jMðrG � NÞ
�
� ðu; v;wÞ � rG� NU½u; v;w	G� F ½ðN � rGÞ þ jMG	:

Expanding out, we note that the first term is equal to

NU½Gx;Gy ;Gz	 ¼ ðGyy

h
þ GzzÞN 2

x þ ðGxx þ GzzÞN 2
y þ ðGxx þ GyyÞN 2

z � 2GxyNxNy � 2GxzNxNz � 2GyzNyNz

i
:

For a non-embedded model in which quantities are defined only on the interface, a parameterized

set of equations which model this phenomena were derived using a different approach in [29], see also
[32].
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3. Numerical approximations and algorithms

3.1. Level set methods

Level set methods rely on two central embeddings; first the embedding of the interface as the zero level

set of a higher dimensional function, and second, the embedding (or extension) of the interface�s velocity to

this higher dimensional level set function. As mentioned earlier, this leads to an initial value partial dif-

ferential equation for the implicitly defined function / of the form

/t þ F jr/j ¼ 0 /ðx; t ¼ 0Þ given: ð1Þ

This is the implicit formulation of front propagation given in [16]. Schemes for solving this equation were

provided in [16]. In almost all computational situations, those schemes are inefficient and wasteful. Practical

implementation of these schemes requires addressing the computational cost of both the embedding of the

level set function / and the embedding of the underlying velocity field F .

3.1.1. Efficiency

The Narrow Band Level Set Method, introduced by Adalsteinsson and Sethian in [1], limits work to a
neighborhood (or ‘‘narrow band’’) of the zero level set. This is a significant cost reduction; it also means

that extension velocities need only be constructed at points lying in the narrow band, as opposed to all

points in the computational domain. This idea of limiting computation to a narrow band around the zero

level set was introduced in Chopp [6], used in recovering shapes from images in Malladi et al. [14], and

explored in depth in [1]. Details on the accuracy, typical tube sizes, and number of times a tube must be

rebuilt may be found in Adalsteinsson and Sethian [1].

This Narrow Band Method requires some sort of reinitialization, that is, reconstruction of the signed

distance function. As understood by many practitioners of level set methods (see [22,25]), reinitialization
every time step (or close to every time step) is a poor strategy, since each reinitialization causes error in the

position of the front. However, occasional reinitialization is required when coupled to the Narrow Band

method.

One technique for performing this reinitialization comes from using Fast Marching Methods [20], which

are Dijkstra-like upwind finite difference algorithms which solve the Eikonal equation

jrT jF ðx; y; zÞ ¼ 1 T ¼ 0 on C;

in OðN logNÞ time, where N is the total number of points in the computational domain. Reinitialization

comes as a special case of the Eikonal equation when F ¼ 1. The key observation in Fast Marching

Methods is that an upwind approximation to the gradient implies an ordering on mesh points, obtained by
a sort algorithm which updates the points in ascending value of T , similar to Dijkstra�s network path al-

gorithm [7]. This ordering is computed as the calculation unfolds, and yields an algorithm which avoids all

iteration. The Fast Marching Method has been extended to higher order finite difference approximations by

Sethian in [23], first-order unstructured meshes by Kimmel and Sethian [12], and higher order unstructured

meshes by Sethian and Vladimirsky [26]. Some early applications include photolithography in [21], a

comparison of a similar approach with volume-of-fluid techniques in [9], a fast algorithm for image seg-

mentation in [15] and computation of seismic travel times by Sethian and Popovici [24]. A different Di-

jsktra-like method for the Eikonal equation, obtained through a control-theoretic discretization which
hinges on the optimality criterion, was developed by Tsitsiklis [31]. For discussion of various Dijkstra-like

methods and extensions beyond the Eikonal equation to general static Hamilton–Jacobi equations, see

[27,28].
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3.1.2. Extension F and G off the interface

We need to build values for both the velocity F and the material quantity G off the interface in order to

achieve the embedding. We shall exploit the extension velocity methodology developed in earlier works.

To begin, in order to construct extension velocities F , one starts with the given velocity Ffront and chooses

an appropriate extension velocity (see [22,25] for details). In [13], the idea of extrapolating the given front

velocity along the gradient of the front to obtain an extension velocity off of the front was first introduced

and used for image segmentation; an earlier extension velocity formulation was given in [30]. Mathemat-

ically, this means that

rF � r/ ¼ 0: ð2Þ

It is straightforward to show that this choice of extension velocity maintains the signed distance function

for the level sets of / for all time (see, for example [33]).

In [2], a strategy for constructing these extension velocities was introduced, using a two-tiered system.

Given a level set function at time n, namely /n
ij, one first constructs a signed distance function �//n

ij around the

zero level set. Simultaneous with this construction, one then constructs the extension velocity Fext satisfying
Eq. (2). This velocity is used to update the level set function /n. For details, see [2].

We shall use these ideas to extend G off of the interface.

3.2. Algorithms for diffusion and transport of material quantities

We use standard upwind difference operators to advance both the level set function / and the scalar G.

3.2.1. Level set advection

We use a second-order scheme to advect and propagate the level set function. We consider the general

form

/t þ u � r/ þ F jr/j ¼ �j;

where u is the multi-dimensional advection field, F is the propagation speed normal to the front, and � is a
constant. We note that F and u can depend on G. Following [16], a spatially second-order upwind scheme is

used for the two transport terms on the left, and a central difference scheme is used for the diffusive term on

the right.

For the time advancement, we use a second-order Runge–Kutta approximation. Abstractly, we write

/t ¼ Lðu; F ;/; �Þ:

Then the time advancement is

U0 ¼ LðuðtnÞ; F ðtnÞ;/; �Þdt;
/ ¼ / þ U0;

U1 ¼ Lðuðtnþ1Þ; F ðtnþ1Þ;/; �Þdt;
/ ¼ / þ ðU1 � U0Þ=2:

The advantage to this formulation is that one does not construct a separate copy of /.

3.2.2. Scalar advection

The general form of the update equation is

Gt ¼ r NU½Gx;Gy ;Gz	
�

þ jMðrG � NÞ
�
þ ðu; v;wÞ � rG� NU½u; v;w	Gþ F ½ðN � rGÞ � jMG	:
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The update for the G scalar is similar to that for the level set function. The diffusion term is computed using

central differences. The advection term u � rG is approximated using the above upwind differences. The

term

�ðn2yux � nxnyðuy þ vxÞ þ n2xvyÞG

is an exponential term, decaying or expanding depending on the sign. This is computed using central de-

rivatives. Again, a second order in time approximation is used.

3.2.3. Alternative formulation

We note here an alternative formulation, which is to work directly with the conservation equation given

in Section 2.4.2 and approximate the evolution of LG using conservative schemes. We are pursuing this

approach, and will report on it elsewhere.

4. Numerical tests of algorithm: two dimensions

In this section, we consider some two-dimensional test cases to analyze the accuracy of the algorithms.

4.1. Diffusion, fixed front

We begin by studying the diffusion of a scalar quantity on a fixed front. As a simple test, let the front be

given by a circle with radius 0:3 in a unit box. Define the / surface by computing the signed distance rather

than using the exact distance. The initial value for G is defined everywhere as

Gðx; yÞ ¼ x:

We then evolve the G array according to

Gt ¼ r ðGxxn2y
h

� 2Gxynxny þ Gyyn2xÞ þ jðrG � NÞ
i
:

The normal N is taken from the level surface, and is constant in time since the surface never moves.

An exact solution may be produced as follows. Parametrizing the front by arc length,
ðr cosðs=rÞ; r sinðs=rÞÞ, the initial data is given in terms of arc length by r cosðs=rÞ. With unit diffusion co-

efficient, the exact solution is given by

r cos
s
r

� �
exp

�
� rt

r2

�
¼ x exp


� rt
x2 þ y2

�
:

4.1.1. Diffusion, fixed front, simple

Calculations are performed up to time T ¼ 1 for three grid sizes, 60 60, 120 120, and 240 240.

Initial value for G is Gðx; yÞ ¼ x in all of space. As a scalar function of arc length, this is a wave on the

circle, i.e. the lowest wave number. Stability is ensured by a time step which is scaled as the square of the

step size. The error is evaluated as follows. For a large number of time values, we compute the exact

solution by the above expression and subtract it from the computed solution obtained by interpolating G
onto uniformly spread points on the interface. We then use the trapezoid rule to compute the integral of
the square of this error, and divide through by the total length of the circle. This gives the average two

norm of the error along the front. The results are shown in Fig. 1. The observed convergence is second

order overall.
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4.1.2. Diffusion, front fixed, general case

A more challenging problem occurs when the front is no longer a circle and the initial value of the scalar

is more complicated than a single eigenvector of the diffusion operator. We chose as a perturbed circle as

the initial front, and the scalar G is defined for points ðx; yÞ on the front with Gðx; yÞ ¼ x2. Note that if the

scalar is defined only on the front, for example as a function of arc length, the initialization of Gðx; yÞ will be
done by the fast extension method [2].

Fig. 2 gives a view of the front and a plot of G as a function of arc length. This scalar has a full spectrum

of frequencies, which can be solved exactly with a Fourier series method. To find the exact solution at a

later time T , we extract the initial scalar as a function of arc length, decompose it into its Fourier modes,

and then scale each mode using the coefficient of diffusion r ¼ 0:05. At that time T , the numerical solution

is interpolated (bi-cubic) onto the same points and subtracted. This will give the error as a function of arc

Fig. 2. Diffusion on a more general front. Initial value given by F ðx; yÞ ¼ x2. Later value at T ¼ 1. Both values are drawn as functions

of arc length.

Fig. 1. Front fixed, values diffused on a circle.
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length. We then compute the L2 norm of that function and divide by the length to get the average error.

This error is shown in Fig. 3, and the run is simulated until time T ¼ 1:0.

4.2. Advection

4.2.1. Advection – two dimensions

Next, we consider the advection of the material quantity as the front moves. We start with an ellipse

with major axis 0:4 and 0:3, centered in a unit square box (Fig. 4). The initial value of the scalar is defined as

Gðx; yÞ ¼ x2 þ y2 � xyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p þ 1

10

everywhere in space. We consider a flow which rotates this ellipse around the center a full circle. For this

problem, we know the exact solution, since the values will just rotate with the front. We run this problem
for two grid sizes, h ¼ 1=121 and h ¼ 1=241.

We measure the error both for the front evolution as well as the scalar evolution, presented in the two

plots shown in Fig. 5. The error is measured as follows.

• For the front, we compute the contour of the level set. Using the exact solution, we compute the point-

wise difference between the computed and exact front. This will give us the error along the front. Then

we take that error and compute the average two norm of this error. This gives a good indication of the

overall error for front evolution. The infinity norm gives a very similar result, since the pointwise error is

fairly continuous. This was done for two hundred time values and the results are plotted as a function of
time for both grid resolutions.

Fig. 3. Diffusion on a more general front. Error along the front as a function of time for the grid sizes 60 60, 120 120, and

240 240.

Fig. 4. Initial scalar value along the ellipse.
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• For the scalar values along the front, we interpolate the values from the scalar field onto the points on

the front by using a bi-cubic interpolation. We then subtract off the exact solution at those points gotten

by rotating the exact values, giving the error along the front. Take the average two norm of this error for

the same two hundred time values as before. To get the relative error size, we note that the maximum

value of the scalar is about 0.4.

A different and equally useful measurement of scheme accuracy is to track mass conservation. To do so,

we compute the path integral of the values along the front for each of these two hundred time values and
plot it as a function of time in Fig. 6. Note that for all of these runs, we get a second-order reduction of the

error; even on the coarse grid, the error is very small.

4.2.2. Advection and diffusion

We now rerun the above problem, but in addition to the rotation we include diffusion of the values along

the surface. We use a diffusion coefficient 0.1 in order for the scalar to reduce in amplitude by about a factor

of 10.

The exact solution can be obtained, since it is a combination of a rotation and a diffusion on a fixed

elliptical front. To compute the exact solution of the diffusion process on a fixed front, we write the solution

in terms of arc length. In this representation, the scalar satisfies the heat equation with diffusion constant

0.1 and can be solved using Fourier series.
We then ran the same numerical experiments as in the previous section. In order to compute the exact

solution, we extract the values on the initial front by arc length (using bi-cubic interpolation), defined on an

evenly spaced one dimensional grid. We then compute the numerical Fourier series to provide the exact

solution at later times. This is then rotated and subtracted from the computed solution (see Fig. 7 and Fig. 8).

Fig. 6. Mass conservation along the ellipse; no diffusion, with rotation.

Fig. 5. Error for rotating front.

282 D. Adalsteinsson, J.A. Sethian / Journal of Computational Physics 185 (2003) 271–288



5. Numerical tests of algorithm: three dimensions

We now test the ability of the algorithm to track the evolution to material quantities in conjunction with

three-dimensional interface evolution. In all of the tests, it is necessary to use cubic interpolation at all time.

Lower order interpolation will cause convergence to stall. In all of the results, we expect that the error

should be very smooth.

5.1. Diffusion on sphere

When the front is fixed, and r ¼ 1, the evolution equation becomes

Gt ¼ NU½Gx;Gy ;Gz	 þ jMðrG � NÞ:

In this test we compare the simulation with an exact solution. To find an exact solution, we look for a

solution on a sphere which only depends on the z value. It can therefore be described as GðxÞ ¼ GðuÞ in
terms of spherical coordinates. The diffusion equation for the sphere, using this symmetry and the fact that

diffusion is proportional to the flux gives

GtðuÞ ¼ lim
Du!0

ð2pr sinðu þ DuÞÞGuðu þ DuÞ=r � ð2pr sinðuÞÞGuðuÞ=r
2pr2 sinðuÞDu þOððDuÞ2Þ

¼ cosðuÞGuðuÞ þ sinðuÞGuuðuÞ
r2 sinðuÞ

The function GðuÞ ¼ cosðuÞ is an eigenfunction of this operator with eigenvalue �2=r2, so with that as the
initial condition, we get an exact solution

Fig. 8. Mass conservation of rotated ellipse with scalar diffusion.

Fig. 7. Error of front rotation and scalar.
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Gðt;uÞ ¼ cosðuÞ exp

� 2t

r2

�
:

We can do this on concentric spheres by defining the initial function to be

Gðx; y; zÞ ¼ z:

The calculations are run on successive grids of 50 50 50 and 100 100 100 on the box

½�0:6; 0:6	  ½�0:6; 0:6	  ½�0:6; 0:6	. Here, the front is initialized as a sphere with radius 0.4, and the
simulation are run up to T ¼ 0:25 with diffusion constant r ¼ 0:5. The results are shown in Figs. 9 and 10.

Fig. 9. The error along the surface is shaded according to value. The plane slices through those values and the resulting error is shown

along the front as a function of arc length. This is the error at t ¼ 0:25 for the grid spacing 1/100.

Fig. 10. Diffusion on a stationary sphere. How the error changes over time for the exact solution. Plot of the average two norm (L2) of

the error as a function of time for both h ¼ 1=50 and h ¼ 1=100. The error is computed by interpolating the values onto the front, and

subtracting the known solution there. This defines a function on the surface, and we compute a surface integral to find the two norm.

Divide by the area to find the average two norm.
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5.2. Advection

We now study how well the algorithm tracks the advection of scalar values. We rotate a sphere with

values defined on it. We know the exact solution, and can compare both the position of the front and the

values along the front with the exact solution. We use a sphere with radius 0.4, centered around ð�0:5; 0; 0Þ
and rotate the sphere in the xy plane around the origin. The sphere completes a full circle at T ¼ 1. Four

time values for this rotation are shown in Fig. 11. Initial values along the surface are given by the expression

xþ y þ z.
To analyze the accuracy, we track three measurements.

• The pointwise error in the position of the front. The error is computed at each point on the surface, and
then the average norm is computed along the surface. The result is shown in Fig. 12.

• Along the surface, we compute the error in the value of the scalar and then compute the norm of the

error over the whole surface. The result is shown in Fig. 13.

• The integral of the scalar over the surface. This should be conserved over time. The result is shown in

Fig. 14.

We use a surface integral to compute the average two norm of the error along the surface. This com-

putation is done for the grid sizes 120 120 60 and 240 240 120.

Fig. 12. Error for location of front.

Fig. 11. Four time values for rotating a sphere.
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5.3. Advection and diffusion

Consider the problem where we have simultaneous advection and a diffusion in three dimensions. We

begin with a sphere with center at ð�1=5; 0; 0Þ and radius 2/5 in the box

½�4=5; 3=5	  ½�3=5; 4=5	  ½�1=2; 1=2	

and now rotate it a quarter turn in the xy plane to ð0;�1=5; 0Þ by the rotational field 2pðy;�x; 0Þ and final

time T ¼ 1=4. We set the diffusion coefficient to 1=2 and run two different grid sizes 1/50 and 1/100. The
rotation is shown in Fig. 15 with the error shown in Fig. 16.

Fig. 15. Advection and diffusion in three dimensions. The motion of the surface. Initial condition is transparent. Surface is rotated

around the origin.

Fig. 13. Difference between computed and exact.

Fig. 14. The integral over the scalar changes.
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In future work, we plan to apply these algorithms to semiconductor problems and surface/fluid

transport.
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